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Outlines 

Part 2: 

 Spectral clustering 

 Graph theory  
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 Spectral clustering algorithms 
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 Principal Component Analysis (PCA) and constrained PCA 

 Locality preserving projection (LLP) and constrained LPP 

 Spectral clustering and constrained spectral clustering 
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Data forms in unsupervised context 

X Y 

Data of vector form  Rl 
Data of similarity matrix form  RnxRn 

Data in Rn Labels in [0, 1]k 
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X1 X2 ... Xn 

X1 s(x1,x1) s(x1,x2) s(x1,xn) 

X2 s(x2,x1) s(x2,x2) s(x2,xn) 

: 

. 

Xn s(xn,x1) s(xn,x2) ... s(xn,xn) 

Features 

sij = f(d(Xi, Xj)) 
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Data forms in semi-supervised context 

X 
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X1 X2 ... Xn 

X1 s(x1,x1) 0 1 

X2 0 s(x2,x2) s(x2,xn) 

: 

. 

Xn 1 s(xn,x2) ... s(xn,xn) 

Data of similarity matrix form  RnxRn 
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Unlabeled data  usupervised learning 

x1 

x2 



8 

Labeled data  supervised learning 

x1 

x2 
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Partially labeled data  semi-supervised 

learning 

x1 

x2 
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Pairwise constraints data  

semisupervised learning 
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Feature 

extraction 

Feature 

selection 

 Columns reduction 

{a1, …,al }    {b1, …,bm} {X1, ..., Xn}          {W1, ..., Wk}  

Prototypes 

selection 

Instances 

selection 

Rows reduction 

l < m k < n 

Feature selection / extraction approaches 
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Feature selection / extraction approaches 
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Classification approaches 

SemiSemi--SupSup  UnSupUnSup  

ClassificationClassification  

SupervisedSupervised  

LinearLinear  

SemiSemi--SupSup  UnSuperUnSuper  SupervisedSupervised  

Non LinearNon Linear  
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Data Clustering 

 Data clustering is an important problem with many applications in: 

 Machine learning,  

 Computer vision,  

 Signal processing…  

 

 The object of clustering is to divide a dataset into natural groups 

such as:  

 Points in the same group are similar 

 Points in different groups are dissimilar to each other.  

 Clustering methods can be: 

 Hierarchical: Single Link, Complete Link, etc.  

 Partitional or flat: k-means, Gaussian Mixture, Mode Seeking, Graph 

partitioning, etc. 
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How many clusters? 

How many clusters? 

Four? Two? 

Six? 



Clusters forms 
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Clustering assumptions 

 Clustering algorithms are based on implicit assumptions 

about the definition of cluster’s structure.  

 Generally, a cluster can be defined as a set of points that 

share some property:  

 well-separated: A cluster is a set of points in which each point is 

closer to every other point in the cluster than to any point not in 

the cluster.  

 prototype-based: A cluster is a set of points in which is point is 

closer to the prototype that define the cluster than the prototype 

of any other cluster. (K-means, K-medoïds),  

 density based: A cluster is a dense region of point that is 

surrounded by a region of low density. (mixture models)  

 graph-based: A cluster is a group of points connected to one 

another. (spectral clustering).  
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Clustering methods 
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Graph Theory View of Clustering 

 The database is composed of n points: 

  = {x1, …, xi , …, xn} 


 Points are characterized by their pair-wise similarities i.e. to 

each pair of points (xi, xj) is associated a similarity value wij. 

Similarity matrix W Rnxn is then composed of terms wij 

which can be of: 

 Cosine,  

 Fuzzy,  

 Gaussian types.  

 Gaussian type is much more used in clustering approaches 

and is defined by:  


Rx i 

 )x,x(dexpw ji

2

2

1
ij 2




  );x,x(dfw jiij
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Illustrative example 

 Dataset is composed of six points: {x1, x2 ..., x6} 
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 We define the degree di of a vertex i as the sum of edges 

weights incident to it: 

 

Illustrative example 
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Graph cut 

 The degree matrix of the graph G denoted by "D" will be 
a diagonal matrix having elements di on its diagonal and 
the off-diagonal elements having value 0.  

 Given two disjoint clusters (subgraphs) A and B of the 
graph G, we define the following three terms: 
 The sum of weight connections between two clusters: 

 

 
 The sum of weight connections within cluster A:   

  

 
 The total weights of edges originating from cluster A. 


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Graph cut 
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 The objective of MinCut method is to find two sets 

(clusters) A and B which have the minimum weight sum 

connections. So the objective function of this method is 

simple and defined by: 

 

 It is easy to prove that such equation can be written as:  

 

 qi  Rn  is the indicator vector of vertices belonging to 

clusters A and B such that: 

)B,A(CutJMinCut 

u)WD(u
4

1
J T

MinCut 










Bi1

Ai1
qi

Minimum cut method 
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 When relaxing indicator vector from binary to continuous values in 

an interval, the solution minimizing the objective function will be 

equivalent to solve the following equation:  

 

 The Laplacian matrix L is defined by:  

 

 Laplacian matrix L presents a trivial solution given by the eigenvalue 

"0" and eigenvector "e": e = (1, 1, …, 1)T.  

 The second smallest eigenvector , also called Fiedler vector, will be 

used to bi-partition of the graph by finding the optimal splitting point.  

 In this method there is no mention of the cluster size and 

experiments showed that it works only when clusters are balanced 

and there are no isolated points. 

uu)WD( 

W- D  L

Minimum cut method 
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Normalized and MinMax cut methods 

 1st constraint: inter-connections should be minimized: 

  cut(A, B) minimum 

 2nd constraint: intra-connections should be maximized: 

  cut(A, A) and cut( B, B) maximum 

 These requirements are simultaneously satisfied by 

minimizing these objective functions  











)B(Vol

1

)A(vol

1
)B,A(Cut)B,A(JNCut

JNCut(A,B) = 0.125 
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Normalized and MinMax cut methods 

 By relaxing the indicator vector “u" to real values, it is 

proved that, minimizing NCut objective function is 

obtained by the second smallest eigenvector of the 

generalized eigenvalue system: 

 

 

 

 Similar procedure can be also applied to MinMaxCut 

method  

 

Dyy)WD( 

2/12/1
NCut D)WD(DL



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Spectral clustering steps 

 Pre-processing 

 Construct the graph and the similarity matrix representing the 

dataset. 

 Spectral representation  

 Form the associated Laplacian matrix  

 Compute eigenvalues and eigenvectors of the Laplacian matrix. 

 Map each point to a lower-dimensional representation based on 

one or more eigenvectors. 

 Clustering 

 Assign points to two or more classes, based on the new 

representation.  
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Illustrative example 
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xx11  xx22  xx33  xx44  xx55  xx66  

xx11  0 0.8 0.6 0 0.1 0 

xx22  0.8 0 0.8 0 0 0 

xx33  0.6 0.8 0 0.2 0 0 

xx44  0.8 0 0.2 0 0.8 0.7 

xx55  0.1 0 0 0.8 0 0.8 

xx66  0 0 0 0.7 0.8 0 
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Illustrative example 

x1 1.5 -0.8 -0.6 0 -0.1 0 

x2 -0.8 1.6 -0.8 0 0 0 

x3 -0.6 -0.8 1.6 -0.2 0 0 

x4 -0.8 0 -0.2 2.5 -0.8 -0.7 

x5 -0.1 0 0 0.8 1.7 -0.8 

x6 0 0 0 -0.7 -0.8 1.5 

Pre-processing 

Build Laplacian matrix L of the graph 
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Decomposition: Find  

 eigenvalues Λ and 

 

 eigenvectors X of matrix L 

 

 

 

 Map vertices to the 
corresponding components of 
2nd eigenvector  
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Spectral Clustering Algorithms 
(continued) 
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k-way graph cuts 

In order to partition a dataset or graph into k classes, two 

basic approaches can be used: 

 Recursive bi-partitioning: The basic idea is to recursively apply bi-

partitioning algorithm in a hierarchical way: after partitioning the graph 
into two, reapply the same procedure to the subgraphs. The number of 

groups is supposed to be given or directly controlled by the threshold 

allowed to the objective function. 

 k-way partitioning: The 2-way objective functions can be generalized 

to take into consideration more than two clusters (Card(Ai) = |Ai|):   





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Spectral clustering steps 

 Pre-processing 

 Construct the graph and the similarity matrix representing the 

dataset. 

 Spectral representation  

 Form the associated Laplacian matrix  

 Compute eigenvalues and eigenvectors of the Laplacian matrix. 

 Map each point to a lower-dimensional representation based on 

one or more eigenvectors. 

 Clustering 

 Assign points to two or more classes, based on the new 

representation.  
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NJW algorithm 

Given a set of points that we want to partition into k clusters:  

 

1. Form the similarity matrix W defined by:  

 

2. Construct the Laplacian matrix:  

 

3. Find the k first eigenvectors of L (chosen to be orthogonal to each other in 
the case of repeated eigenvalues), and form the matrix U by stacking the 
eigenvectors in columns:  

4. Form the matrix Y from U by normalizing each of U’s rows to have unit 
length: 

5. Treat each row of Y as a point in Rk and classify them into k classes via k-
means or any other algorithm:  

 

 

6. Assign the original points xi to cluster j if and only if row i of the matrix Y was 
assigned to cluster j.  
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 In general, the spectral clustering methods can be divided into three main varieties 
since the basic spectral algorithm is itself divided to three steps:  

 Preprocessing: Spectral clustering methods can be best interpreted as tools for 
analysis of the block structure of the similarity matrix. So, building such matrices 
may certainly ameliorate the results.  

 Calculation of the similarity matrix is not evident. 
 Choosing the similarity function can highly affect the results of the following steps. In most 

cases, the Gaussian kernel is chosen, while other similarities like cosine similarity are used 
for specific applications.  

 Graph and similarity matrix construction: Laplacian matrices are generally 
chosen to be positive and semi-definite thus their eigenvalues will be non-negatives. 
The most used Laplacian matrices are summarized in the following. 

 

 

 

 

 

 Clustering: simple algorithms other than k-means can be used in the last stage 
such as simple linkage, k-lines, elongated k-means, mixture model, etc.  

Variants of spectral clustering algorithms  
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Parameters tuning (1/2)  

The free parameter of Gaussian kernel is often overlooked. Indeed, with 
different values of , the results of clustering can be vastly different:  

 The parameter is done manually.  

 The parameter is selected automatically by running the spectral algorithm 
repeatedly for a number of values and selecting the one which provides 
least distorted clusters in spectral representation space.  

 

Weakness of this method:  

 computation time,  

 the range of values to be tested has to be set manually  

 with input data including clusters with different local statistics there may not 
be a single value of that works well for all the data.  
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Parameters tuning (2/2) 

 Local scaling parameter: A local scaling parameter for each data 
point is calculated:  

 

 

 

 

 The selection of the local scale can be done by studying the local 
statistics of the neighborhood of point . For example, it can be 
chosen as:  

   i = d(xi, xm) 

  

 where xm is the m-th neighbor of point xi. The selection of "m" is 
independent of the scale. 
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Estimating of the number of clusters (1/2) 

The main difficulty of clustering algorithms is the estimation of the number of 
clusters.  

 Number of clusters is set manually.  

 Number of clusters is automatically discovered:  
 eigengap detection  

 canonical coordinates 

 

1- Eigengap detection: Find the number of clusters by analyzing the 

eigenvalues of the Laplacian matrix,  
 The number of eigenvalues of magnitude 0 is equal to the number of clusters k. 

This implies one could estimate k simply by counting the number of eigenvalues 
equaling 0. This criterion works when the clusters are well separated,  

 Search for a drop in the magnitude of the eigenvalues arranged in increasing 
order,  

 Here, the goal is to choose the number k of clusters such that all eigenvalues 
are very small 1, 2, …, k are very small while k+1 is relatively large. 
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2- Find canonical coordinate system: 
 Minimize the cost of aligning the top eigenvectors with a 

canonical coordinate system,  

 The search can be performed incrementally,  

 At each step of the search, a single eigenvector is added to the 
already rotated ones,  

 This can be viewed as taking the alignment results of the 
previews number as an initialization to the current one.  

Estimating the number of clusters (2/2) 

1 k 

k+1 
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Computation and memory problems 

In signal and image processing domains, similarity matrix grows as the 
square of the number of elements in the dataset, it quickly becomes 
infeasible to fit in memory. Then, the need to solve eigensystem 
presents a serious computational problem.  

Solutions: 

 Sparse similarity matrix: One approach is to use a sparse, approximate 
version of similarity in which each element is connected to only a few 
of its nearby neighbors and all other connections are assumed to be 
zero.  

 Employ efficient eigensolvers: Lanczos iterative approach.  

 

 Nyström method: Numerical solution of eigenfunction problem. This 
method allows one to extrapolate the complete grouping solution using 
only a small random number of samples. In doing so, we leverage the 
fact that there are far fewer coherent groups in a scene than pixels.  
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Conclusion 

 Some spectral clustering methods are presented. 

 They can be divided into three categories according to the basic 

stages of standard spectral clustering:  

 pre-processing,  

 spectral representation, 

 clustering.  

 We pointed out various solutions to their main problems:  

 parameters tuning, 

 number of clusters estimation, 

 complexity computation.  

 The success of spectral methods is due to their capacity to discover 

the data clusters without any assumption about their statistics.  

 For these reasons, they are recently applied in different domains 

particularly in signal and image processing.  
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Semi-supervised 

dimensionality reduction 
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Introduction 

 In pattern recognition and machine learning domains 

there are rapid accumulation of high dimensional data: 

 Digital images 

 Financial time series 

 Genes expression micro-arrays 

 Dimensionality reduction is a fundamental tool in these 

domains. 
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Dimensionality reduction (1) 

There are two types of dimensionality reduction: 

 

 Feature selection consists to retain relevant features 

which constitute a low dimensional feature space. 

 

 Feature extraction consists to transform the original 

representation space into a new low dimensional space 

by combining the initial features. 
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Dimensionality reduction (2) 

 Unsupervised feature selection measures the feature capacity of 
keeping the intrinsic data structure in order to evaluate its relevance.  

 

 Supervised feature selection consists in evaluating feature 
relevance by measuring the correlation between the feature and 
class labels. 

 Supervised feature selection requires sufficient labeled data 
samples.  
 However, the sample labeling process by the user is fastidious and 

expensive.  

 That is the reason why in many real applications we are facing huge 
unlabeled data and small labeled samples: ”lack labeled-sample 
problem”,  

 We propose spectral graph theory in order to elaborate semi-
supervised criteria for feature selection. 
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Feature selection scores (filters) 

 Supervised scores: Fisher score 

 

 

 Unsupervised scores: Variance 

 

 

 Semi-supervised scores: 

Laplacian score 

 

 

 

 

 Pairwise constraints scores 



51 

Semi-supervised dimensionality reduction 

 Given:  

 Set of data samples: X = {x1, …, xn} 

 Two types of pairwise constraints M and C: 

 Must-link pairwise constraints: M = {(xi, xj)}; Card(M) = |M| = nM 

 Cannot-link pairwise constraints: C = {(xi, xj)}; Card(C) = |C| = nC 

 Problem: 

 Find W = (w1, …, wd) such that the transformed low-dimensional 

space defined by:  

 yi = WTXi 

 Preserve the structure of the original data set as well as the pairwises 

constraints.   
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Objective function: Must and Cannot 

link constraints 
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Objective function with Must-links and cannot links constraints: 

The objective is to maximize the average squared distance in the 

transformed low-dimensional space between instances involved by the 

must and cannot links. 
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Objective function: Unlabelled data, Must 

and Cannot link constraints 
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Objective function with Unlabelled data, Must and Cannot link constraints: 

The first term is the average squared distance between all data 

samples in the transformed space (PCA) 

Under the constraint wTw = 1 
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Objective function in spectral concept 
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Objective function in spectral form with Unlabelled data, Must and Cannot link 
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Objective function in spectral concept 
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Objective function in spectral form with Unlabelled data, Must and Cannot link 

constraints: 
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 Given:  

 Set of data unlabelled samples: X = {x1, …, xn} 

 Two types of pairwise constraints M and C: 

 Must-link pairwise constraints: M = {(x i, xj)}; |M| = nM 

 Cannot-link pairwise constraints: C = {(x i, xj)}; |C| = nC 

 Problem: 

 Find W = (w1, …, wd) such that the transformed low-dimensional space defined by:  

 yi = WTXi 

 

   

Under the constraint wTw = 1. 

 

Problem formulation 

wXLXw)w(J TT


